Very Low Rate Speech Coding Algorithm Based on Biomimetic Pattern Recognition ⋆

نویسندگان

  • Yanyan Yin
  • Ye Yin
  • Xiangnong Wu
  • Wei Hu
چکیده

Based on the speech coding technology, in this paper we propose a new method encoding the speech signal by the bionic pattern recognition technique. Using this new encoding method, the text message can be received after using biomimetic pattern recognition of the speaker’s voice. And the information related to the speaker’s individual characteristics can be obtained by “comparison” between the speaker’s voice and the standard voice which corresponding to the text message. Then the text message and individual characteristics information are encoded before transmission. Compared with the application of traditional speech recognition in low-rate speech coding, the scheme using biomimetic pattern recognition is single template identification with a faster recognition speed and lower instructions (keywords) false acceptance rate, which nearly reaches the limits of the voice coding rate. This new method is anticipated to have great potential application in military communications, underwater communications, secure communications and other demands under special conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

A Pattern Recognition Approach to Voiced — Unvoiced — Silence Classification with Applications to Speech Recognition

Absb-act—In speech analysis, the voiced-unvoiced decision is usually performed in conjunction with pitch analysis. The linking of voiced-unvoiced (V-UV) decision to pitch analysis not only results in unnecessary complexity, but makes it difficult to classify short speech segments which are less than a few pitch periods in duration. In this paper, we describe a pattern recognition approach for d...

متن کامل

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

Biomimetic Pattern Recognition

In speaker-independent speech recognition, the disadvantage of the most diffused technology ( Hidden Markov Models) is not only the need of many more training samples, but also long train time requirement. This paper describes the use of Biomimetic Pattern Recognition (BPR) in recognizing some Mandarin Speech in a speaker-independent manner. The vocabulary of the system consists of 15 Chinese d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012